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Abstract. OCAMS is a practical engineering application of multi-agent systems 
technology, involving redesign of the tools and practices in a complex, 
distributed system. OCAMS is designed to assist flight controllers in managing 
interactions with the file system onboard the International Space Station. The 
“simulation to implementation” development methodology combines 
ethnography, participatory design, multiagent simulation, and agent-based 
systems integration. We describe the model of existing operations and how it 
was converted into a future operations simulation that embeds a multiagent tool 
that automates part of the work. This hybrid simulation flexibly combines 
actual and simulated systems (e.g., mail) and objects (e.g., files) with simulated 
people, and is validated with actual data. A middleware infrastructure for agent 
societies is thus demonstrated in which agents are used to link arbitrary 
hardware and software systems to distributed teams of people on earth and in 
space—the first step in developing an interplanetary multiagent system. 

Keywords: Work Systems Design, Work Practice Simulation, Decision 
Support System, Multi-Agent System, Agent-based Systems Integration, Space 
Flight Operations. 

1   Introduction 

OCAMS (Orbital Communications Adapter Mirroring System) is a practical 
engineering application of multi-agent systems technology, using the Brahms 
modeling and simulation tool [1-6], involving redesign of the tools and practices in a 
complex, distributed system. The purpose of the project was to automate some of the 



 

tasks involved in mission operations at the Mission Control Center (MCC) at NASA 
Johnson Space Center (JSC), supporting the International Space Station (ISS).   

The combination of people and systems involved in JSC mission operations 
support is complex and distributed [7]. When long-term complex programs like ISS 
evolve, new systems and processes are introduced that interact with legacy systems.  
This creates a growing distributed systems environment that can be taxing on the 
flight controllers and introduce more risk of human error. The OCAMS solution 
bridges these complex distributed systems and automates processes that are repetitive 
and time consuming. This simplification helps improve operator productivity and 
safety and reliability by reducing the chances of human error.  

The OCAMS tool is complex because it is embedded in the infrastructure of 
geographically and temporally distributed people and systems for which it facilitates 
communication: 

1) People and Organizations: flight controllers, “backroom” support teams, 
and customers (planners, human factors specialists, etc.) located in different 
rooms at MCC and at other NASA centers in other states; and the crew 
onboard ISS. 

2) Computer Systems: File servers, PCs communicating with the ISS, support 
PC, the PC that mirrors the ISS file directories (MirrorLAN), and PC laptops 
onboard ISS. 

3) Communication Media: voice communications system (“voice loop”) at 
MCC, telephone, email, “flight notes,” “change requests,” and log 
documents. 

4) Space Communication Network: Communication between ground and ISS 
using the TDRS satellite system is short-term, periodic and irregular (from 
human perspective). 

5) Out of this world geographic distribution: 
a) Multiple NASA centers 
b) In Houston: Highly secure Mission Control Center with flight control 
rooms and support backrooms; offices in different buildings at JSC 
c) International partners’ (Russia, Europe, Japan) control rooms and offices  
d) ISS orbiting earth about every 90 minutes. 

6) Regulations relating to safety and control have over time produced 
disconnected, legacy systems: 
a) no ISS link to earth’s Internet 
b) no cell phones in MCC 
c) no network connection between MirrorLAN and MCC file servers 
d) multiple versions of operating systems and file generation and handling 
programs at different NASA centers and onboard ISS. 

7) Work Practices and Protocols: 
a) Diversity of methods for delivering files, notifying support personnel 
(called “officers”) of work to be done (see Communication Media), and 
notifying customers (usually “flight controllers”) of completed tasks and 
problems 
b) Continuous 24-7 coverage in three shifts (called “orbits”)  
c) Shift handovers relying on detailed logs created manually documenting 
the work done on the previous shift, anticipated work, and ongoing issues. 



 

The OCAMS tool was designed in a collaboration between two NASA centers, 
JSC (an operations center) and Ames Research Center (ARC). The objectives 
included: 1) Developing new mission operations design and automation capabilities 
that would reduce the need for ISS ground support on a 24-7 schedule, and 2) Shifting 
MCC’s concept of operations from controlling systems directly onboard the ISS to 
supporting astronauts living and working in space. 

The project approach was to automate tasks to improve operator productivity, 
increase accuracy of the process, and eventually enable consolidation of this position 
into other console disciplines. A year was allowed to demonstrate a new methodology 
and automation capability, in which we would use a multiagent system to simulate 
and implement an automation tool.  This paper describes the methodology and 
presents the results of the project in the first half year, including partial 
implementation of a prototype tool within a simulation of the new work system 
(called a “future operations simulation”). 

More broadly, in terms of engineering agent societies, this project illustrates the 
following themes: 
1) Highly-interdisciplinary methodology for the engineering of complex 

distributed applications:  
a) Ethnography 
b) Mission Operations (flight controllers & protocols) 
c) IT Administration: tools and constraints (OCA–Orbital Communications 

Adapter wireless card, servers, FTP, email, multiple networks, security, file 
types, mirroring, GUI, agents) 

d) Brahms: Work Practice Simulation 
e) MA: Agent-based Systems Integration 
f) Java platform 

2) Analysis, Design, Development & Verification of Agent System 
The simulation to implementation methodology enables dealing with complexity 
by using a simulation to design and largely implement a tool that is integrated 
with a simulation of the work setting and practices: 
a) The future tool is embedded in the Future Operations Simulation 

i) Simulated people (Brahms agents) 
ii) Actual software agents (e.g., personal agents) 
iii) Actual external systems (e.g., email, FTP, file system, office tools) 
iv) External system APIs used by Brahms Communication (COM) Agents 

b) The work system design and tool is tested with actual data 
i) Simulation is driven by the same inputs used by the future tool  
ii) Develop using part of the data set (e.g., a month’s input)  
iii) Continue to test during the implementation phase by using new data as it 

becomes available. 
3) Middleware infrastructures for agent societies:  Use of Brahms agents and 

external system APIs to link arbitrary hardware/software to teams of people 
Brahms provides a promising candidate for answering the question: How will we 
build practical complex agent systems on a variety of platforms using arbitrary 
external software and hardware devices? 

This paper describes the OCAMS project’s origin and scope, the Current Operations 
Model and simulation output and the consequential design and partial implementation 



 

of a multiagent tool (OCAMS) that automates operations in what we call the Future 
Operations Simulation. Conclusions review how the development of OCAMS 
provides methods and insights for engineering agent societies. 

2   Simulation to Implementation Approach 

Our methodology makes multiagent simulation of work practices an integral part 
of creating agent software, an approach we call “simulation to implementation” (Fig. 
1). The approach starts with the creation of a Current Work Practice Simulation 
Model (CSM), using the Brahms language. The purpose of this simulation is to help 
frame an organization’s problems and prioritize relationships and trade-offs. For 
example, how will the functionality of NASA’s new spacecraft vehicle—the CEV—
impact mission operations, and how will the vehicle to ground split in functionality 
impact communications and in turn performance? Framing the problem to be 
addressed, metrics and scenarios are developed to create a work practice model in 
Brahms. Simulating the model in Brahms will generate simulation data that can be 
used to interpret the outcome and validate the answers to the framing questions. One 
important additional aspect is the use of such a simulation to generate new ideas for 
formulating the problem, and ultimately identifying solutions to the problems that can 
be addressed in the next design phase. Methods used in this phase are work practice 
observation (including videotaping and still photography), collaborative modeling 
with the workers from the organization, and interview techniques [8]. 

In the Participatory Design of Future Work System phase we work closely with 
the workers from the organization to design a solution to the problems identified in 
the current work practice simulation [9]. In this phase we generate user-driven 
requirements and turn these requirements into a functional and technical design of a 
multi-agent workflow tool. Following a principle of participatory design—
transforming current practices rather than believing one can start from scratch—leads 
to the Future Work System Simulation Model (FSM) phase, in which the CSM model 
is adapted to include the proposed tool(s). The data, metrics. and scenarios from 
Phase 1 are used to drive the future work simulation, allowing comparison of the 
CSM with the FSM models and validating the improvements of the new design. 
Because the future tool is embodied in the FSM model, from the workers’ perspective 
it is actually a prototype tool that runs in an automatic mode driven by historical data, 
simulating human actions. By providing interactive control of the simulation in a 
prototype GUI, the tool’s operation can be demonstrated and its automatic features 
inspected and hence refined. 

In the Work System Implementation phase we transform the Brahms FSM model 
into a distributed real-time multi-agent system (MAS). The Brahms simulation engine 
in runtime mode will shift the discrete event simulation from being driven by an 
internal clock to being coupled to the time and events in the real world, thus 
transforming simulated agents into real-time software agents. Brahms can both 
simulate or execute its agent models over the internet, enabling a seamless 
transformation from an agent-based simulation environment to a distributed multi-
agent system environment.  



 

 

 
Fig. 1. Simulation to Implementation Approach 



 

3  Project Origin and Scope 

One purpose of this project was to demonstrate the use of an agent-based 
simulation-to-implementation methodology in Mission Control at NASA’s Johnson 
Space Center. Program management chose the Orbital Communications Adapter 
(OCA) backroom group, which provides file transfer support to the ground team and 
astronauts onboard the ISS. 

Applying the simulation-to-implementation methodology to the OCA setting 
involved the following activities: 

1) Observation of OCA operations and interviews with OCA officers 
2) Creation of a baseline simulation of current operations using Brahms 
3) Collaborative redesign of the work system (documented in a functional 

specification) 
4) Creation of a future operations simulation that embeds an agent-based 

workflow automation tool, implementing the functional specification 
(documented in a technical design) 

5) Validation of the tool and revised work processes by driving the simulation 
with actual data 

6) Integration of the agent-based workflow tool in the MOD work environment. 
In this methodology, multiagent simulations serve multiple roles for understanding, 

communication, formalization, specification, validation, and implementation.  
The purpose of the OCA current operations model was to create a baseline 

understanding and formal description of an aspect of the OCA work process that 
could be redesigned.  Early observations of OCA operations and discussions with 
OCA officers indicated that mirroring of ISS files was a good candidate for 
improvement.  Given time constraints and modelers available, our strategy in 
developing the current operations model was to understand and simulate enough of 
the system to provide confidence that we could develop a functional specification for 
automating the mirroring process.  Consequently, the simulation does not attempt to 
capture any of the timings or activities of the OCA officer in any detail, except for the 
mirroring activity. The simulation showed that the OCA officers spend about 6% of 
their work time on the mirroring activity. 

The development of a current operations simulation has also served as tool for 
management to understand the Brahms agent-based architecture and to grasp how a 
future operations simulation could be converted into a workflow tool. The future 
operations simulation is described at the end of this paper. By virtue of formalizing 
the future design with a prototype GUI, it serves the additional role of a management 
decision support tool for redesigning mission operations. 

4   Model of the OCA Current Operations Work System 

This section provides an overview of the OCA current operations model, which 
represents the typical actions of OCA officers during a shift. The activity model 
describes what the OCA officer does during the shift; only the mirroring activity is 
modeled in any detail in this current operations simulation. The main components of 



 

the model are:  OCA Officers, the OCA computers and drives, Building 30S (the 
MCC) work areas, computer files and folders, and work schedules. Fig. 2 shows the 
agents and main flow of data and commands between the agents and objects in the 
OCA current operations model.  For simplicity, the folders are represented as 
geographic areas (shown as clouds). 

To drive the simulation, we used a spreadsheet provided by an OCA officer, 
KfxSummary_Nov2006.xls, which had been derived using macros from a log created 
automatically by the ISS uplink/downlink software of the November 2006 file 
transfers. Table 1 shows an entry from the spreadsheet. 

 

 
Fig. 2.  Agents and Objects in the OCA Current Operations Model 

Table 1. Example of Kfx Summary Log data that drives the current operations simulation. 

Up/Down Downlink Uplink 
GMT 300/23:59:00 301/00:00:05 
Bytes 1,364 40,539,150 

FileName 
d:\oca-

down\Updates.log 
U:\COSS\ILRT\Ref CD42\ 

TrainingManuals\English\01(0)T0008E.pdf 
Extension log Pdf 

Client Plan D Plan B 
Year 2006 2006 

 
Referring to Fig. 2 notice that a special agent, called the OCA Excel Com Agent 

(Excel CA, hereafter ECA) provides information about what files were transferred 
during a particular shift (as shown in Table 1). The simulated OCA Officer agent 
determines whether a given file needs to be mirrored based on its type. The ECA 



 

simulates the file being placed in the location FolderOnPF1. The OCA Officer agent 
then operates on the file using PF1, the USB Drive, and the MirrorLAN. 

   1. The OCA Officer agent sends the ECA its shift information at the beginning of 
its shift just after handover: 

• GMT Date, e.g. 305 is Nov 1st 
• GMT Start/Stop Hour and Minute 

 2. ECA sends file information back to OCA agent: 
• File Extension, e.g. pdf, xml, zip 
• File Name without Path, e.g. nfhWednesday.pdf 
• File Path, e.g. /BHPG/Crew/News/ 
• File Direction (Uplink or Downlink, where “up” means to the ISS) 

   3. OCA Officer agent applies thoughtframes that use file type information and 
sends back to ECA: Decision to mirror or not (true or false) and File Type symbol, 
e.g. OSTPV_Snapshot_File_Type. 

   4. If the file is being mirrored, the ECA then puts the file in the location  
FolderOnPF1, and informs the OCA Officer agent of the location and File Type 
symbol. 

This part of the simulation is not a model of work practice, but rather a method of 
driving the simulation to use actual file transfer data. The effect is that the simulated 
OCA Officer agent will mirror the same files during a given simulated shift that were 
mirrored in the corresponding actual shift, by virtue of processing the files listed for 
that time period in the Kfx Summary Log file.  

The simulation constitutes a model of work practice (i.e., has fidelity) by virtue of 
including the following: 
• Data about file transfers that can be derived from the Kfx logs, including file 

names, paths, sizes, and transfer direction. 
• Relationship between file path/name and type of file (Table 1), e.g., ACKBAR 

files, BEV updates files, DOUG files. 
• OCA officer activities of transferring files from PF1 to USB Drive to 

MirrorLAN, in which the duration of these activities is estimated by the actual 
byte size of the files being transferred at any time. 

• OCA officer activities of monitoring file processing by services running on the 
MirrorLAN, in which the duration of these activities were estimated by OCA 
officers, based on file type. 

Consequently, statistics can be generated from the model regarding how much time 
the OCA agent spends mirroring files. Furthermore, by virtue of recognizing file 
types, procedures for handling different types (e.g., providing notification) can be 
modeled more easily in the Future Operations Simulation.  

The Brahms Current Operations model completely describes an OCA shift.  
However, only the shift handover, file transfer, mail synchronization, and mirroring 
operations are modeled in any detail. The behaviors of people (modeled as Brahms 
agents), systems (modeled as Brahms objects), and software agents (modeled as 
Brahms agents) are represented as Brahms workframes and thoughtframes.  

Here is an example of one of the actions performed by the OCA Officer agent 
beginning the shift (ReadOCAHandoverLog is abbreviated ROHL): 

 



 

workframe Read_OCA_Handover_Log { 
 variables: 
  forone(int) maxTime; minTime; actPriority; 
 when( 
  knownval(current.currentIndividualAct = ROHL) and 
  knownval(ROHL.isDone = false) and 
  knownval(maxTime = ROHL.maxDuration) and 
  knownval(minTime = ROHL.minDuration) and 
  knownval(actPriority = ROHL.activityPriority)) 
 do { 
 moveToIndividualActivityLocation(); 
 ROHL(actPriority, minTime, maxTime,  
  Statistics_Understanding); 
 conclude((ROHL.isDone = true), fc:0);} 
} // workframe Read_OCA_Handover_Log 

 
In the conditional or “when” part of the workframe, the durations are read from the  

activity schedule object ReadOCAHandoverLog. In the action or “do” part of the 
workframe the agent does the following: 1) moves to an appropriate location, 2) reads 
the log (a primitive activity performed for the specified time), and 3) concludes that 
the activity of reading the log has been done. (Such propositions become part of the 
individual agent’s model of the world and are called beliefs, contrasted with the 
Brahms global model of the world, consisting of facts, which are only accessible to 
agents via uncertain observables that occur during activities [1][5].) 

Reading the log is defined as a primitive activity as follows: 
 
primitive_activity ReadOCAHandoverLog(int priorityNum,  
int minDuration, int maxDuration, Statistics statObj) { 
 display: "Read OCA Handover Log"; 

 priority: priorityNum; random: true;  
 min_duration: minDuration; max_duration: maxDuration; 
 resources: statObj; } 
 
The resources property indicates that statistical information about this activity 

should be logged by the simulation engine.  See Section 4.2 below on Statistical 
Charts. The min_duration, max_duration and random facets of the activity definition 
specify a random duration at runtime. 

5  OCA Current Operations Simulation Output 

The Current Operations model was run for 31 simulated days, corresponding to the 
OCA officers’ shifts in November 2006.  The simulation result can be verified and 
validated using two methods, the AgentViewer and statistical charts. 



 

5.1   AgentViewer  

A Brahms simulation produces a history file in the form of a database that can be 
diagramed and studied in the AgentViewer.  This allows us to understand the 
behavior of agents and objects during the simulation. Fig. 3 shows agent behaviors 
chronologically as activities; Workframes (darker shade) shown with “wf”, Primitive 
Actions (at the bottom) shown with “pa:”, Composite Activities (light shade) shown 
with “ca:”, Communications (vertical lines), and Thoughtframe conclusions (light 
bulbs). Locations appear in the bar above the black timeline for each agent or object.  

The agent is transferring files to a USB drive (sitting at ISS MAS client area) and 
then mirroring the files to the MirrorLAN (at the MirrorLAN area). Labels that won’t 
fit are shown as three dots (…). One communication has been selected, causing 
details to pop up. Light bulbs may also be selected for details about the belief 
concluded by a Thoughtframe. 

 

 
Fig. 3.  Simulated OCA agent’s actions during Orbit 3 (starting 5:50 PM CST; each white 

mark is a clock tick = 5 minutes). Behaviors are modeled as workframes with composite 
activities (CA) that invoke workframes, ending in primitive activities, such as communications 
(shown as vertical lines connecting to file objects that are not visible here). 

5.2   Statistical Charts 

A Brahms simulation can be “instrumented” by defining a resources property for 
primitive activities (i.e. actions). For example, the communication action SelectFile 
has the resources property Statistics_Transferring_Files, an object. The primitive 
activity DraggingFile has the resources property “file,” which is the object being 
manipulated.  When the Brahms executive (simulation engine) encounters a resources 



 

property, it logs data about the agents, objects, and durations during which that 
resource was worked on.  The current operations model is annotated by 20 statistics 
categories. These categories represent general work “chunks” classifying the different 
activities of the OCA officer for which we want the simulation to generate decision-
metrics. Fig. 4 illustrates the kinds of charts that can be generated from the resulting 
statistics. 

Analysis of such charts revealed that the OCA Officer spends most of the shift 
logging and verifying file transfers. Our design has therefore focused on automating 
the mirroring activity in such a way that these subactivities in the future do not have 
to be performed by the OCA officer. Besides eliminating a manual error-prone 
process, automating the mirror activity will result in the OCA officer saving time and 
potentially enable the position to be given less tedious responsibilities. 

More specific charts compare shifts according to the percent of total files 
transferred to the percentage of files in a given shift (called an orbit) that are mirrored. 
For example, Orbit 2 (the daytime shift) processed 36% of the files transferred 
between ground and ISS during November 2006.  Of the files that Orbit 2 transferred 
about 31% were mirrored. Thus, on average about a third of the files processed by an 
OCA officer are mirrored. This represents a significant workload (about 2500 files 
manually manipulated) and further justifies automation. 

 

 
Fig. 4.  Example of simulation results for mirroring subactivities. Note: Not definitive data; 

these charts represent work in progress. They are not necessarily accurate and do not reflect 
later changes made to the model. 

In developing the future operations simulation, which will change the work design 
by including a workflow tool for mirroring, we could choose to model additional 
activities, such as communications with flight controllers, and instrument these events 
to gather statistics from the simulation.  These statistics can then be compared to 
observations we make of OCA operations, leading us to refine the model or gain 
confidence in the simulation’s predictions.  In particular, we could use the simulation 
to predict that the OCA officer could take on other responsibilities, and include these 



 

in another future operations simulation.  In this way, we proceed through observation, 
collaborative design, simulation, and redesign to incrementally improve how the work 
is done, gaining efficiency and reliability. 

6  Creating a Future Operations Simulation 

The steps in creating an OCA future operations simulation include: 1) Creating a 
functional design of the revised OCA work system, including automation of 
mirroring, 2) Revising the current operations model to more accurately represent the 
aspects of work pertinent to mirroring automation, 3) Implementing the functional 
design as Brahms agents, revised OCA Officer agent activities, and a simulated GUI 
for human-agent interactions, 4) Validating the simulation using existing Kfx 
Summary logs and carrying out “what if” simulations that introduce problems (e.g., 
unavailable systems or errors during mirroring).   

At the time of this writing, the project is in step 3, implementing the revised work 
system design as a Future Operations Simulation. The simulation will include 
approximately 80% of the OCAMS tool. Using the tool, the work process is modified, 
such that the OCA Officer will perform the following operations:�� 

1. Select files to mirror � (reviewing Mirroring Decision Agent’s selections) 
2. Submit session (a batch) of files to mirror ��  
3. Review and verify results; delete session of mirrored files 
4. �Handle files not mirrored by OCAMS � manually 
5. Handle files with MirrorLAN errors identified by OCAMS  
6. Review mirrored files automatically logged in handover document� 
7. Notify flight controllers mirroring completed ��. 
Fig. 5 shows the first version of the future operations simulation. It shows the flow 

of shift information between the OCA Officer, the Mirroring Decision Agent, and the 
Monitoring Agent.  Files to be mirrored are transmitted by FTP to a staging area on a 
separate computer where the Monitoring Agent individually moves files to the 
MirrorLAN (via a drive mapping) and inspects the outcome of batch file execution.  

Through collaboration among the ARC project team, JSC OCA officers, and 
management, the Future Operations Simulation will be modified to adjust the design 
of the OCA work system (e.g., as may be required for implementation in the MCC).  
After it is agreed that the design is complete and validated through simulations, a 
runtime distributed Brahms agent system can be extracted from the Future Operations 
Simulation and packaged as the OCAMS tool, to run in the Brahms virtual machine 
on computers and the network in the OCA backroom area of the MCC. A certification 
process, to be defined, might include constructing a mockup of this network and 
operations. 

Continuing ethnographic observations of OCA operations will be a key part of our 
work while simulating the future operations to verify the simulations and to 
understand how mirroring operations interact with other aspects of work practice, 
such as notification to other flight controllers. Furthermore, we know from 
observation that mirroring is a useful training ground for new OCA officers. 
Therefore, we want to implement the system in such a way that manual operations on 



 

the MirrorLAN are still possible and that automated processes adapt accordingly. 
Similarly, after implementation of the OCAMS tool, an important new phase of 
observation will begin to understand changes to the work practice, emergent uses of 
the tool, and ways to improve it. 

 
Fig. 5.  Future Operations Model, derived from Current Operations Model (Fig. 2). 

7  Related Work 

In this section we compare and contrast the Brahms simulation framework to 
Workflow Management Systems and Agent-Based Modeling and Simulation (ABMS) 
to show the modeling requirements of the simulation to implementation approach. 

7.1   Workflow Management Systems 

Workflow Management Systems (WfMS) have evolved from business 
management, business process reengineering, business process modeling and 
simulation, and to a lesser extent artificial intelligence. OCAMS is a WfMS, where 
the automated process is not a business, but mission operations.  

Recently, workflow modeling languages and tools have been developed as industry 
standards. For example, Business Process Execution Language (BPEL) is an XML-
based language with structured, executable programming concepts that can be 



 

integrated with web services. The most common language in academia is the Petri-
Net language [10, 11], which uses complex state transition diagrams to model 
programs and parallel processes such as concurrent tasks. A multi-agent system can 
be modeled as parallel Petri-Nets.  

Workflow models are based on a functional flow-based abstraction of the work, 
modeling defined tasks and operations such as those formalized in business 
procedures. In contrast, Brahms’ activity-based approach [2] enables modeling the 
complexity of activities, communication practices, relationships, and circumstantial 
details of coordination and workarounds, together constituting work practice, by 
which functions are accomplished [12] [9]. Although I-X [13] also uses the concept of 
an activity, its framework uses a task-planning approach. A Brahms activity is a 
broader concept, including more than goal-directed problem solving, such as resting 
by informally conversing with co-workers [2].  

In systems with run-time capabilities, the work process model is or can be 
automatically transformed into an executable language. For example, BPNM, IDEF3, 
colored Petri-Net and YAWL languages are imperative programming languages. In 
contrast, Brahms is an agent-oriented Belief-Desire-Intention (BDI) language which 
represents processes as an organization of agents with individual beliefs, coordinating 
group and agent-specific activities represented as situation-action rules [14]. Rather 
than only expressing functional transformations, Brahms enables representing roles, 
points of view, habits, temporal rhythms of behavior, contextual factors, 
communication media, tools, conversations, etc. This level of specificity enables a 
Brahms agent that automates work to fit into the practices of the people who must 
interact with it, an understanding encouraged by and enabling the embodiment of 
participatory design within a simulation-to-implementation engineering approach.  

7.2   Agent-Based Modeling and Simulation 

Agent-based Modeling and Simulation (ABMS) is a term mostly used by 
researchers in complex adaptive systems to model systems of relatively simple agents 
that derive their emergent behavior from the system as a whole, instead of from 
complexity within the agents themselves. Tools for ABMS such as Swarm [15] and 
Repast [16] are not based on any particular human behavior theory and are not BDI 
languages; agent methods are driven by a global scheduler. In contrast, Brahms 
models cognitive agents; their internal state (possible and incomplete activities, plus 
beliefs, which can represent plans and goals) combined with a complex modeled 
environment determines the agents’ next behaviors. Thus the Brahms language is both 
a BDI agent language and an ABMS language, which is important for example in 
representing decision making in mirroring files and handling errors.  

In the category of BDI languages [17], Brahms is distinguished from systems such 
as Jason and AgentsSpeak by its use of a subsumption-based architecture [18] for 
representing an agent’s conceptualization of activities as parallel-hierarchical 
processes [1, 2]. This allows modeling how activities are like identities that blend and 
contextually change what is perceived, how communications are interpreted, and how 
tasks are prioritized. See [14] for additional comparisons to agent-oriented languages. 



 

8  Conclusions 

The OCAMS agent system is designed to automate workflow deterministically, 
under OCA officer control to develop trust, enable customization, manage 
problems/shortcomings, and retain a manual approach for use in training. A key 
aspect of this practical engineering project is the highly interdisciplinary team that 
partners operations personnel with researchers and combines specialized knowledge 
from computer science, anthropology, spaceflight operations, and work systems 
design.  

The use of Brahms demonstrates how agents can be used in a “simulation to 
implementation” methodology by which a model of current operations is converted 
into a future operations model that incorporates both essential aspects of an agent-
based tool and a simulation of how the tool interacts with people and other systems.  
This hybrid simulation enables flexible, incremental development of an 
implementation, such that actual systems (e.g., email, FTP, files) replace simulated 
systems and objects. The simulations are driven by logs of the actual work performed 
in the past, and the future operations simulation operates upon the actual files 
manipulated by the OCA officers.  By running the simulation subsequently with data 
from other months, we can validate the generality of the mirroring rules and special 
handling designed into the tool. 

OCAMS is one of the first steps in developing an interplanetary multiagent system 
that integrates people on earth and astronauts with a diversity of hardware and 
software systems. The combination of agent-based simulation and systems integration 
enables great efficiency in designing, validating, and deploying practical tools. 
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